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TECHNICAL NOTE D-315

GAS DYNAMICS OF AN INFLATED SPHERE STRIKING A SURFACE

By John T. Howe and E. Dale Martin

SUMMARY

A method for predicting the motion of an inflated sphere striking a
hard surface has been developed in which the effect of the wave structure
in the inflating gas is considered. The method predicts maximum accel-
eration, the velocity during impact, and the space~time trajectory of the
top of the skin. The effects of the presence of an atmosphere are con-
sidered. The required size of a sphere that will not exceed a specified
allowable acceleration is determined. Results of 52 examples are pre-
sented covering a wide range of initial conditions.

INTRODUCTION

The use of an inflated sphere to cushion the impact of equipment
being landed on the moon or planets offers a number of advantages derived
from the simplicity of such a system. Such a landing vehicle would be
compactly packaged aboard a parent vehicle, and inflated with a suitable
gas Jjust before the landing is to be made. With a payload supported at
its center, the inflated sphere could land unpowered, uncontrolled, and
in any attitude. On impact, the sphere would flatten on the bottom,
absorbing the impact energy by compressing the gas. When the payload
has come to rest, the skin could be ruptured in order to prevent rebound,
or the vehicle could be allcwed to bounce and roll until it came to rest
on level ground.

Furthermore, it is entirely possible that an inflated sphere may
serve both as the entry vehicle as well as the impact vehicle for landing
on a planet that has an atmosphere. Chapman (ref. 1) in studying entry
into planetary atmospheres shows for example that a nonlifting vehilcle
(such as a sphere) could enter the Martian atmosphere and experience a
maximum deceleration only 12 percent of human tolerance. The present
analysis concerns itself with the landing impact of an inflated sphere.

Numerous analytical and experimental investigations of the impact
behavior of inflated bags and other energy absorbing devices have been
made. These are mostly concerned with low-speed impact. Tests have been
performed at the University of Texas (refs. 2-9) on various impact
absorbing devices at impact speeds up to 130 feet per second.



For high-speed impact, a different analytical approach is useful to
reveal features of the impact that become more prominent at higher speed.
In the present analysis of the landing impact of an inflated spherical
vehicle, several questions need be answered: "“What is the motion of the
inflated sphere on impact?", "What is the maximum acceleration?", "How
much does the sphere deform?", and "What physical parameters are impor-
tant to an understanding of the behavior of the impacting sphere?"
Reference 10 answers these questions for the case of a sphere with a gas
of uniform time-dependent pressure and with a skin which remains undeformed
away from the impact zone. For high-speed impact, of course, the pressure
in the inflating gas is a function of both space and time and cannot be
assumed uniform. The present paper is an analysis of the impact motion
of an inf'lated sphere in which the radius of curvature of the top of the
sphere is not required to stay constant and wave motion in the inflating
gas is taken into account. The questions raised above are answered in an
approximate way for high-speed impact conditions.

A wide variety of cases were investigated by numerical integration
of the differential equations. The problem was prepared for solution on
a digital computer by Mrs. Yvonne Sheaffer.

SYMBOLS
A top point of the skin
a,b,c,e,f, points on the trajectory of A in sketch (b)
c instantaneous local sound speed
c TﬁtT) dimensionless local sound speed in the inflating gas
d point where the shock reflected from the skin strikes

the wall in sketch (b)

g gravitational acceleration
8e gravitational acceleration at earth's surface
K dimensionless parameter in equation (26) defined by

equation (27)

1 constant defined by equation (31)
m mass (without subscript, refers to entire landing system
mass )

n number of ge's acceleration
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P instantaneous local pressure of the inflating gas

P %%, dimensionless local pressure

T radius of curvature of the skin

t time

t tl:?', dimensionless time

u instantaneous local particle velocity (positive in the
positive y direction)

u P? I, dimensionless local particle velocity

W shgck velocity

W IZL , dimensionless shock velocity

v height of point A above the ground

¥ %%, dimensionless height of point A

a constant defined by equation (31)

B constant defined by equation (31)

4 ratio of specific heats of inflating gas

&) thickness of the skin

p mass density

c average tension stress over cross section of skin at
point A

w constant defined by equation (31)

Subscripts

a,d conditions at those points in sketch (p)

atm atmospheric conditions

m material of the skin

min minimum



P payload

s skin (including skin meterial and payload attached
locally)

shock 0,1 shock connecting states O and 1

shock 1,2 shock connecting 1 and 2

shock dec at d conditions at point 4 of the shock whose trajectory is
dc  in sketch (b)

0 conditions Just before impact
0,1,2,3 states 0,1,2,3 in sketch (b)
6,12,18,24,30, case numbers in figures 20 and 21

35,36,41,k42

ANALYSTS
Statement of the Problem
When the inflated sphere strikes the ground surface, a shock wave

passes upward through the inflating gas with velocity Wgi as shown in
sketch (a). Pressure signals from the impact region have not yet been

Skin
Shock wave

y

Reflected waves Gas at rest

Ground

Sketch (a)

received by the gas above the shock wave, so that a portion of the gas
continues to fall at undiminished speed. The shock wave is not plane,
and there are waves reflected at the boundary. At a high pressure and
density, the gas behind the shock is essentially at rest with respect to
the ground. Eventually, the shock wave strikes the top surface of the
sphere and reflects back toward the ground.

O\ W >



The motion of point A on the skin is to be determined. This motion
can be established by making use of a simplified model of the wave shown
in sketch (a) as follows:

Along a vertical axis through
A, the wave in sketch (a) is assumed
to be a plane wave, and reflections
from the boundaries are ignored.
Then the time-dependent one-
dimensional wave motion along the
vertical axis through point A
would appear as shown in sketch (b).
At time +t = 0, the bottom of 7
the sphere makes contact with the
horizontal flat surface. The point
A on the top of the skin is then at
¥ = 2ry. The path of point A 1is
given by the heavy curve f,a,e,b,c.
From f to a, the top of the skin
moves at undiminished velocity, -ugp,
if the acceleration due to the
gravity force on the skin and stress

waves in the skin are neglected. ﬁ:ysy A\X
The line from the origin to a is MAALNA
the trajectory of the initial shock. O d ~~Stote 3

It is reflected from the skin at a,
back to the ground at d, and from
the ground at d, back to the skin
at c. Along the path a,e,b,c, Sketch (b)

the skin is accelerating upward with

respect to the ground due to an increase in inflating gas pressure over
that of state O. The greatest pressure at the skin is that at a point
Just to the right of point a below the curve a,e,b,c. Along that
curve to the right of point & an observer moving with the skin in the
gas would sense a diminishing pressure corresponding to a piston (the
skin) being withdrawn from the gas, that is, the piston accelerates in

an upward direction. Hence the region a,d,c 1is a region of rarefaction
as indicated by expansion waves shown by the dashed lines. The region to
the right of the curve d,c is one in which two families of waves are
present. The family of waves traveling downward originated at the skin
and was modified on interacting with the shock d,c. The family of waves
traveling upward is the reflection of the first family from the ground.
As the waves of both families meet, both are modified in strength and
speed.

t

Given the motion of the piston (the skin), one can solve the entire
flow field in the y,t plane in sketch (b) by numerical methods. However,




in the present situation the motion of the skin is unknown and is to be
determined. Thus it appears that a solution of a differential equation
of skin motion that 1s compatible with the wave equations is needed to
yield the desired result.

The Differential Equation of Skin Motion

The momentum theorem will be
Patm applied to a spherical element of
skin at the top of the sphere. The
stresses on the element are shown in
sketch (c). The thickness of the
skin, 8, is considered to be small

It is assumed that the skin can with-
stand tension only, the average ten-
sion stress over the cross section
being o¢. In general, the gravity
force shown is small compared with
impact forces during high-speed
impact. Within the differential
element, pg 1is assumed to be uni-
form. A statement of Newton's law
Sketch (c) is then

e e N g

One may well wonder looking at sketch (c) just where the supported
instrument payload fits into the picture. If the payload is distributed
over the skin, it is simply included in Py If, on the other hand, the
payload is supported at the sphere center by many inextensible cords
from the skin, it 1s again in effect distributed over the surface of the
skin (but not quite uniformly). That portion of the payload mass which
is assigned to the point A 1is then assumed to be included in pg. The
distribution function of the center-supported payload mass over the skin
surface will not be specified.

el
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Method of Solution

Equation (1) might be solved simultaneously with the unsteady one-
dimensional gas dynamic theory on a numerical step basis, provided some-
thing is known of the term —20/r. In this way, the entire picture in

compared with the radius of curvature.
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the physical plane (sketch (b)) could be constructed. Fortunately, for
many useful physical examples, it is not necessary to construct the entire
flow field in order to obtain the motion of the skin. Instead, a simpli-
fied method is presented and is discussed belows.

Reference is again made to sketch,(b). States O and 1 can be
determined directly from shock-wave relationships. From these, the
trajectory of the initial shock is determined. Point a 1is found where
this shock trajectory intersects the straight line originating at zero
time and having the slope corresponding to the initial velocity of the
sphere. Because the skin has a finite mass, and there are no infinite
forces acting on it, it undergoes a smooth change in velocity with no
discontinuities. Therefore, state 2 just to the right of point a has
the same particle (or skin) velocity as a point just to the left of a.
That is, G, = i, where 1, ‘is the particle velocity close to a imme-
diately behind the reflected shock ad. This fact arnd state 1 determine
the trajectory of the reflected shock ad, and hence point d is deter-
mined readily.

It is worth mentioning that under some circumstances, the first
rarefaction to the right of ad may intersect ad for positive values
of y/ro. This would weaken the shock ad causing it to slow down and
causing the trajectory to curve slightly to the right. This, it will be
seen, would be in favor of the simplified solution in that it delays the
time when the shock dec¢ gets back to the skin. However, the trajectory
ad 1is treated as a straight line for all cases.

The initial slope at 4 of the trajectory of the reflected shock
dc  is readily found from state 2 and from the fact that the particle
velocity of state 3 1s zero. This initial slope is represented by the
dashed line db. The line db lies to the left of the shock dc because,
as the shock meets the rarefactlons caused by the upward acceleration of
the skin, the shock is weakened and its velocity decreases.

If point ¢ 1lies to the right of the point of zero skin velocity
(point e), the sphere has come to rest before the reflected shock dc
gets back to the skin. The foregoing assumptions make the analysis
relatively simple. If b 1lies to the right of e, then ¢ 1lies to the
right of e for reasons given previously. The line db will be checked
in each example in order to find where point b lies and, hence, will
test the validity of the result; that is, does b, and therefore c, lie
to the right of point e?

As long as point ¢ 1lies at or to the right of point e, the skin
motion aec can be solved by the use of simple wave theory without having
to construct the entire flow field. This simple wave theory used with
the differential equation of skin motion 1s not affected by events
happening below the curve aec as long as these events do not have time
to propagate to the skin before it comes to rest. IHence complex wave



interactions in the lower part of the physical plane do not influence the
solution of Llhe skin motion. It is necessary to establish the trajec-

tories oa, ad, and db, and to locate points a and d for given values -
of Cp and Y. For this purpose the unsteady one-dimensional shock

relations expanded as a series (ref. 11, p. 158) are used. DNoting that

Uy = -1, U1 =0, and U, = -1 leads to

G1 =80+ L=2L (5, - & 5, + L2 (2)
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Co cy - u2-ﬁ1)+..o Eo+(7—l)+... (3)

where the minus sign on the second term in equation (3) corresponds to a
backward-facing wave. The slope of the shock trajectory connecting
states O and 1 is

— _ /dF o + Co + Uy + C1 _ WEg +7 -3
Tor - (2 -lorferBirf Hox ()
shock o1

The equation of the trajectory Oa is then -

b, 4y -3 -
Sler i (5) .

The trajectory of the top of the skin to point a 1s given by
y=2-%t (6)

From equations (5) and (6)

_ 2(keo + 7 - 3)
heg + 7+ 1

Ja

and

cti
®

(8)

)**'Eo+7+l -
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The slope of the reflected shock trajectory comnecting states 1 and 2 is

— ay Gy - 81 +lp - C heg + 37 - 1
Wio = <§%> ~ Y1 1 . 2 2 _ _ o) P (9)
shock 12
and the trajectory ad is given by
- L - 32(28y + ¥ - 1)
t = . — y + > ) (lO)
heo + 37 - 1 16857 + 16857 + 37" + 27 - 1

When ¥y =y4 = 0,

. 32(280 + 7 - 1)
tg = — - = (11)
16857 + 16807 + 37" + 27 - 1

State 3 at the ground 1s given by

y - 1
2

(s - G2) = G + 222 1) (12)

The slope at the ground of the reflected shock trajectory dc is

Qi) _Up+8x+Ts+ 38 _k4is +57 - 7 (13)
4t/shock dc at a e b

The equation of the straight line db dis then

I _ 32(285 + 7 - 1)
= —~ y +
Yeg + 57 - 7 16602 + 16coy + 372 + 2y - 1

t (1)

The intersection of this line with the resulting skin trajectory
determines the point b, thus supplying the test whether or not b lies
to the right of zero skin velocity.
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In the region adc, the waves are downward traveling.
wave theory (ref. 12, p. 1012)

or

but from the isentropic relationships

_ =Y 2y
O
o &= 2 Co

Substituting equation (17) into (1) yields

<

and by definition

at _1
agy  u
The boundary conditions are
at ¥ =34, 0 =1ip=-1

and

From simple

(15)

(16)

(17)

=4
ai _ 1/ ro \rol- Y -1 /4 -a,\|7 1 - o0
=== = =0 - - sl 18

(19)

(20)

(21)

~ I~} T
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It is necessary to know p, in order to integrate equation (18).
For the shock connecting states 1 and O (ref. 11, p. 158),

N
> = - o - 2
- + -
Py, 21 -T)  7(r + 1) <u1_ uo> .
po CO l" c:O
or > (22)
D, _ 4% + bagy + 7%+
Bo bg,®
J
For the shock connecting states 1 and 2
- - - - - 2 )
> <%2 - u%> Yy +1) /3, - u%>
== = l - 7 o + = - e e e
Py Ci b Ci
or > (23)
Do _ Bo® + W(2y - 1)5 + W% - 3y + 1
P1 437+ by - 1)eo + (7 - 1)%
J

From equations (22) and (23)

5 - (4302 + W(27-1)30 + 47Z -3y + 11[4eo® + Lydo + y(7+1)] (2)
2 Ueo21he," + b(7-1)e0 + (7-1)%]

Enough information is now assembled to integrate equations (18) and
(19) if something is known of the term 2¢/r in equation (18). In the
absence of either theoretical or experimental information about this
term, it is assumed to be constant as a first approximation; that is, as
the stress at the top of the sphere increases, r also increases and the
top of the sphere flattens out. High-speed motion pictures of the impact
of a gas-filled elastic ball on a flat surface substantiates that the
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top of the ball tends to flatten as

the ball decelerates toward rest
before rebounding (see sketch (d)).

For this reason 20/r is assumed

A-26153

Sketch (d).- Impact of playground ball on table
(297-gm sphere inflated to atmospheric pres-
sure; impact speed 66.6 ft/sec).

constant for all examples computed in this report. Therefore from simple
statics,

20 _ 209

_DPo - Patm _ Po
r r

e - Bo 2 (1 - Bagn) (25)

Substituting (25), (3), and {p = -1 into (18) yields

2y
did _ K|- y - 1 u+ 1 7-1 Ps80
— == 1l- = -1 - 26
dy ulp2[ 2 <Co + 7 - 1)] Po (2)
where
r
K= —22 - 2 S (27)
p.Bu = (1 -7 2 \Ps
[ e) Patm)uo
and P, 1is given by equation (2k).

The term Dgty, 1s treated as a

O\.{:‘UJD’
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constant although it will vary slightly with time as a result of motion
in the external atmosphere at the skin. Equation (19),

a8
]
i}

=

<

(19)

is to be integrated simultaneously with equation (26) and the boundary
conditions (20) and (21) with the aid of (7) and (8) become

_=2(450+7-3) -

at u = -1 (28)
hag + 7 + 1
and
T 8
t= 3 (29)
o + 7V + 1

Variables can be separated in equation (26) and the result can be
integrated if the term raised to the power 2y/(7-1) is expanded in a
series. The result is an approximate expression of ¥ as a function of
4. Keeping three terms of the series in the integration yields (if

baw > p2)

F =9, + & <a+ﬁﬁ+wﬁ2> + B8 pan~ Y P2 o7t 2wi+p
& w a-ptw wN how-g2 N how-p2 N daw-p3
(30a)
or if law < p=
- . 1 aARTHWES
VT Vat 55 in a-p+w
_ 8 n [(2031').+B—~/B2—1I-c1,w)(B—2(¢i—«/B2—ll-ouw):| (30b)
2B hgw? ( 2w+ B E-kow) ( B-20-JBE-kaw)
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where
\

L 72 + 7(1 - 11| .80
*° K‘p2[l ¥ 412 "R Tt
_ {72+ (1 - 21)
KPZ[ 212 ]

s (XSt
- 1. (52

™
1!

> (31)

o~
i}

o t 7 -1

W,

and ¥, 1is given by equation (7)s Setting U equal to zero in equa-
tion (30) yields an approximate expression for Fpin-

For the case where pg 1s uniform (payload uniformly distributed
over the skin) and the mass of the inflating gas is small compared with
the entire mass of the landing vehicle, the parameter X defined by
equation (27) has a special meaning. It is simply (3/2)(7-1) times the
ratio of the internal energy in the gas before impact to the total
kinetic energy of the system before impact. That ratio is the important
physical parameter ¢ used in reference 10. Hence, K and ¢ are simply
related by the factor (3/2)(7-1) for the conditions cited above.

Under the same conditions, the ratio of the mass of payload to the
mass of the entire vehicle is directly related to K by definition
(eq.(27)); that is,

mp Kuo“(1 - Patm)
= =1 - (32)
m 2( Uo/pm)
where
m=mg = my + My (33)

or dividing equation (33) by the surface area of the skin

o\ Fw
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THE SOIUTIONS AND RESULTS

The differential equations (26) and (19) show that exclusive of the
gravity term, the physical parameters governing the impact motion are
7, 8, and K, given by equation (27). For the examples of interest, the
gravity term 1s very small compared with unity and was neglected in the
numerical work, except for one case to be discussed later.

Equations (26) and (19) were integrated numerically using the
boundary conditions (28) and (29) for 52 examples having given values of
K, Co, and 7. The integration was performed on an IBM type TO4 electronic
data~processing machine using the Adams-Moulton predictor-corrector
method of integration.

The values of K, Cp, and ¥ for each example are shown in table I.
Corresponding possible physical situations of velocity, temperature,
atmospheric pressure, material, and initial stress parameters are also
shown in the table. It should be pointed out that ¥, K, and &; com-
pletely specifly a problem but that a given K and &p can correspond to
any number of real plUbLLdL bJ.bu.d.b.Luu.b, and these _pu._ySlcal situations
listed are simply designed to cover an orderly range of problems.

From the differential equation of motion, (26), it is seen that the
maximum acceleration uo<u du/rody along aebc occurs where 4 dis -1,
which is state 2 just to the right of point a. This is expected because
the pressure pushing the skin upward is higher there than anywhere else
in the region. If the maximum allowable acceleration is nge, then

r ~
onge _ <ﬁ du (35)

=) .
’ Uo 4¥/state 2

Also, from equations (26) and (35) for U = -1, neglecting the gravity
term,

o = 28X (52 - 1) = 2 (R)r - (36)

where D, 1is given in equation (2#) as a function of ¢&g and 7. Equa-
tion (36) gives the initial radius required such that the top point of

the skin of an impacting sphere will not exceed the allowable accelera-
tion. Figure 1 is a graph of the dimensionless initial radius required
(or dimensionless maximum acceleration of eq. (35)) as a function of &g
for the different values of K wused in the numerical solutions. The
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physical data from case 42 (table I) and figure 1 can be used to show that
a sphere 10 feet in diameter is needed to absorb an impact velocity of
1000 feet per second if the maximum allowable acceleration is 10,000
earth g's.

The position of the top of the sphere is plotted as a function of
the acceleration in figures 2 through 8. It is seen that the accelera-
tion diminishes smoothly from its high value when the initial shock
strikes the top of the sphere to its low value as the sphere reaches its
maximum deformation just before rebound.

The height of the top of the sphere above the ground during impact
as a function of velocity is shown in figures 9 through 15. Each figure
corresponds physically to a given impact velocity, ug, and each curve
corresponds to a different initial temperature Tp. As would be expected,
the curves become steeper for increasing Tp and increasing ug. The
top two curves in figures 14 and 15 cross because of the nonlinearity of
the differential equation (26).

The trajectories of the top point of the skin in the ¥,t plane
are shown in figures 16 through 21. Physically, each figure presents
curves for a given Ty, and each curve corresponds to a different ug.
The smallest minimum value of § for any example is 0.88 in case 37.
Tt appears in figure 16. This is not surprising because case 37 had the
smallest value of &y = co/|uol and the corresponding initial shock veloc-
ity is the smallest, as shown by equation (11). For this case, the top
of the skin had traveled more than halfway to the ground before the
initial shock struck 1it.

In every case in figures 16 through 21 where point b of sketch (b)
fell to the left of the point of zero velocity, it is marked as "b" with
a subscript corresponding to the case number. This occurred in 9 out of
the 52 examples. These were cases of a high initial gas temperature and
hence a high wave speed. The curve to the right of each of these points
is in question in that the reflected shock dec may have struck the skin
before it came to rest, thus invalidating the theory. However, it appears
that in most of the cases where b appears, the skin has come nearly to
rest by the time point b 1s reached and 1s even nearer to rest before
the shock dc arrives. Therefore, the appearance of point b in the
examples computed is not considered to invalidate the results.

Figure 22 shows the maximum deformation corresponding to the minimum
value of ¥y when the skin comes to rest. It is seen that the minimum
¥y 1increases with increasing K and 3, in the range of initial conditions
used. When the variables in equation (26) are separated and the term
pertaining to ¥y 1s integrated, it becomes evident that the minimum ¥
diminishes linearly with l/K for a given 7 and ¢p; that is,

o\ W =
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(37)

1 ag
1 1 s
= (7 a- 7-1 _
pE[l <‘2‘> <Eo+7-l>] *

where §, given by equation (28) and D, given by equation (24) are
both functions of 7 and 3g. Application of formula (37) to any point
on a curve in figure 22 immediately yilelds a value of the definite inte-
gral for the corresponding EO. Then Jypin for that Co and 7 and any
K can quickly be determined. Simply setting K equal to infinity in
equation (37) yields the envelope of the curves shown by the dashed line
in figure 22. The lower values of ¥pin for each curve (except K = 2)
were determined by use of equation (37).

Comparison of Several Gases

A1) of the examples discussed so far are for 7y = 1.41, and could
apply to either hydrogen or air as the inflating gas. In order to study
the effect of using different gases for a given impact condition,
examples 43 through 49 were computed. They correspond to a given condi-
tion of impact velocity, gas temperature, and pressure (or skin stress
parameter). Thus K is the same for all cases, but both 7> and &, are
different because of the different gases. The gases were chosen to cover
a broad range of 7 and molecular weights. They are helium, air, argon,
carbon dioxide, octane (CgHyg), Freon 12, and dodecane (CizHog) in order
of ascending molecular weights.

The results for an impact speed of 750 feet per second, initial
temperature of 500° R, and skin stress parameter do/ps = 10° £t2/sec?
are shown in figures 23 through 25.

The results for the last three gases mentioned indicate that the
top of the sphere almost strikes the ground before the initial shock even
hits the top. In this situation the applicability of the physical model
used in the analysis is doubtful. But 1f the results are considered to
be qualitatively indicative of the behavior, it is seen in figure 23 that
a sphere inflated with a very heavy gas experiences a large acceleration.
Figures 23 through 25 indicate that a helium-filled sphere behaves much
like a hydrogen-filled sphere, and an argon-filled sphere behaves much
like an air-filled sphere. The three figures show that a srthere has a
much smaller ﬁmin when inflated with a very heavy gas than when
inflated with a light gas.

The effect of changing 7 alone for a given cg and K was inves-
tigated by computing s series of examples. These will not be presented
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graphically. The results indicate that an increase in 7 increases the
maximm acceleration and Fpyin both nonlinearly, but appears to affect
the acceleration more than it affects Jpin-

Comparison With the Approximation of Uniform Compression

One of the assumptions in reference 10 is that the inflating gas has
uniform properties at any instant, varying with time such that
pV7 = constant. Table II is a comparison between the one-dimensional
results of the present analysis with the results of a one-dimensional
analysis in which a uniform compression is assumed throughout the gas.
In the latter, the differential equation replacing equation (26) is

@ -

This equation was integrated using the boundary condition

d

—

day

1]
eIl

at §y =2, a=-1 (39)

The comparison shows that for a given K (i.e., a given impact velocity),
the assumption of uniform compression is very good for high wave speed
(80)- 1In particular, for K = 200 and 3, = 41.7, the maximum accelera-
tions differ by only 8 percent, and the values of Ymin @are identical.

For low wave speeds, the maximum accelerations shown differ by as much
as a factor of 5.7, and the values of Jpin Dby a factor of 1.47. The
maximum acceleration of the wave analysis occurs when the initial shock
wave strikes the top of the skin. Conversely in the uniform compression
analysis the maximum acceleration occurs at the end of the impact as the
sphere comes to rest.

CONCLUDING REMARKS

A method has been developed for predicting the motion of the top of
an inflated spherical membrane during impact of the bottom with the
ground. A differential equation of skin motion is combined with the
simple wave theory of unsteady one-dimensional gas dynamics. As a first
approximation, the term involving the ratio of skin stress to radius of
curvature of the top of the skin is assumed to be constant. When a
better understanding of this term is achieved either by theory or
experiment, the method can easlily be modified accordingly.

o\ FWw >
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Three parameters are found to govern the motion of the sphere on
impact. These are 7, Cg,and K which are the ratio of specific heats
of the gas used to inflate the sphere, the ratioc of sound speed in the
gas before impact to the impact velocity, and a combination of physical
properties of the landing system, respectively.

Maximum acceleration, velocity, and space-time relationships resulting
from the analysis are presented for 52 cases. The results indicate that
for a given impact velocity and allowable acceleration, the size of the
sphere required increases at an increasing rate with diminishing &,
for a given K and 7, and increases linearly with increasing K for a
given &gy and 7. As the top of the sphere comes to rest, the minimum
distance between it and the ground increases nonlinearly with both K
and Co 1in the range of input conditions used in the examples.

The effect of increasing 7y for a given ¢co and K is to increase
the maximum acceleration and minimum distance between the top of the
sphere and the ground (both nonlinearly), affecting the maximum accelera-
tion more than the minimum distance. For a given impact velocity, a
sthere inflated with a very heavy gas experiences higher acceleration and
greater deformation during impact than does a similar sphere inflated to
the same pressure and temperature with a light gas.

The results of the analysis were compared with those resulting from
the assumption of uniform compression, varying only with time by the
isentropic relation. That assumption had been used in reference 10 and
the results show that the assumption is very good for high wave speed
(large G&g)-

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., Jan. 13, 1960
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TABLE T.- EXAMPLES OF ANALYSIS

Possible correspgnding
Case Quantities necessary phys1%al situgtlon,
. atm K
number to the solution Oo/ps = 10° ft2/8802
1
4 K co To, °R| |uol, ft/sec
1 1.41 | 200 13.1851376 50 100
% 2 18.6466005 | 100
3 26.370275 200
4 32.296859 300
5 37.293201 400
6 41.695066 500
7 1411 50 6.592569 50 200
8 9.3233002 100
9 13.1851376 200
10 16.148409 300
11 18.6466005 400
12 20.847533 500
13 141 22.200002| L4.3950459 50 300
1L 6.2155335 100
15 8.7900917 200
16 10.7656198 300
17 12.431067 Loo
18 13.898355 500
19 1.41) 12.5 3.29628L4 50 400
20 L. 66165 100
21 6.592569 200
22 8.074215 300
23 9.3233002 %00
ok 10.4237666 500
25 1.h1f 8 2.6370275 50 500
26 3.7293201 100
27 5.274055 200
28 6.4593719 300
29 7.45864 i¥ole)
30 8.3390132 500

13ee footnote

at end of table, p. 23.




TABLE I.- EXAMPLES OF ANALYSIS - Concluded

Possi‘ple correspc?nding
Case Quantities necessary phy31%atmsitg?t10n;
number to the solution UO/Ds ‘_i_ 108 fta/secz
1l
4 K o Tos R [|uo|» ft/sec
31 1.41 3.555556 | 1.758018 50 750
32 2.486213 100
33 3.516038 200
34 4.3062L8 300
35 L .9724k07 400
36 5.559342 500
37 1.41 2.0 1.318514 50 1000
38 1.864660 100
39 2.637028 200
Lo 3.229686 300
L1 3.729320 400
o 4 .169507 500
43 1.67 3.555556 | 4.295070 500 750
Wl 1.29 1.137880
45 1.k0 1.460750
46 1.12 .639520
Y7 1.03 .516970
48 1.04 634560
) 1.67 1.358220
50 1.67 | 200 32.296859
51 50 6.592569
52 3.555556 | 4.306248
lHydrogen was the inflating gas with the following exceptions:
Case Gas
43 Helium
g COs
45 Air
TS Freon 12
W7 Dodecane
L8 Octane
4o Argon

23
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.96 To or Ty Case General parameters:
Y =1.41,K=200,€, as shown
4.70 500 6 Possible physical situation:
3729 400 5 ugs- 100 ft/sec,
1.94 [ O/ps=10°f17seC’, Pat=0
. 3230 300 4 To as shown (R),
hydrogen inflating gas
// 26.37 200 3
1.92 / 7
A
Y 1.90
/ 1865 100 2
1.88 —/,/
.86
13.19 jii//l/
1.84
0] 10 20 30 40 50 60
— du
Uy

Figure 2.- Acceleration of top of sphere; K = 200.
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92 Ty of To Cose General parameters:
2085 500 {2 7=141,K=50,¢, as shown
]8 65 400 I Possible physical situgtion:
[ ™ uy=—200 ftz/sec ,
6 2
/ L1605 300 10 Oy/ps=10"ft7sec, poyy® O
1.88 To as shown (°R)
hydrogen inflating gas
///13J9 200 9
4 // /
1.80 ’////////,/’ 932 100 8
659 50 7
|'680 4 8 12 16 20 24 28
—du
U—d—v—

Figure 3.- Acceleration of top of sphere; K = 50.
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|.88

.84

1.80

1.76

~<|

172

.68

.64

1.60

.56

Eo or To
13.90 500

// |243 400 7

Case
I8

General parameters:

Y =141, K=22.22 Ty as shown
Possible physical situation:

Ug=— 300 ft/sec

/ps-IO ft7sec’ +Patm=0

§

/I0.77 300 16

To as shown (°R),
hydrogen inflaﬁng gas

<

/

) 879 200

W7

Vv

y 6.22 100 14

440 50 13

Figure 4.-

cl
ala
<l

<

Acceleration of top of syphere; K = 22.22.
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1.84
_ [ General parameters:
To or To  Case y=141,K=12.5,% as shown
42 500 24 Possible physical situation:
o S uo=—400 ft/sec,
[ I Ob/ps=losfﬁsecf Patm=0
.80 932 400 23 To as shown (°R),
hydrogen infiating gos
/ I 807 300 22
1.76
|72 [7 , 659 200 2l
1.68
1.64 /
y / / 466 100 20
1.60 /
1.
56 —
1.52
330 50 19
1.48 //
» “’//////////
0 4 8 12 16 20
T dg
dy

Figure 5.- Acceleration of top of sphere; K = 12.5.
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.80 Co or T Case General parameters:
834 S00 30 y:=141,K=8,CTo as shown
746 400 29  Possible physical situgtion:
uo=—500 ft/sec,
172 /Ps =|06ftz/secf Patm=0
' | 646 300 28 Toas shown(°R),
hydrogen inflating gas
/ 527 200 27
|.64 ///
1.56 //
, 373 100 26
1.48
//
.40
/ _— 264 50 25
1.32
0 4 8 12 6

Figure 6.- Acceleration of top of srthere; K = 8.
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1,72
i General paramelers:
To or To o 7;:.4! }‘K=3.5|56;E°'gs shown
0sSiDle physical situation:
556 500 36 Uo-—750 ft /sec
' 497 400 35 To as shown (°R) T
| hydrogen inflating gas
] / 431 300 34
1.56
/ / 352 200 33
vy v 249 100 32
1.32 //
.24 /
L16 176 3 3
1.08 —
0. 2 4 6 8 10

31

=
ala
‘<I,=l

Figure 7.- Acceleration of top of sphere; K = 3.556.
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1.60 ToorTo Case General parameters’
417 500 42 Y =141,K=20,Co as shown
* Possible physical situgtion:
373 400 | Uy=—1000 ft/sec,
0 ’ 4 Oa/ps=losf12/sec2,p atm=9
1.5 To as shown (°R),
hydrogen infiating gas
/ 323 300 40
.44
/ 264 200 39
1.36
1.28
1.20
186 100 38
112 4
1.04
96 1.32 50 37
.88 =
o 2 4 6 8 o]
v 4
d

<l

Figure 8.- Acceleration of top of sphere; K = 2.0-
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2.00 General parameters: I
y =141, K=200,¢; as shown
Possible physncol situgtion: i
ug=— 100 ft/sec, 0p/ps=10 ft/sec Patm=0,
To as shown (°R), hydrogen inflating gas
1.96 Coor Tp Case
4170 500 6
/ 3729 400 5
/ % 3230 300 4
1.92 / /// 2637 200 3
____.————IBES 100 2
“///
1.88 _ ]
| _—11319 50 |
e
1.84
1.80
0 -2 -4 —6 -8 —1.0 -2 -4

Figure 9.-

'l

Velocity of top of sphere; K = 200.
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General parameters:
¥ =141 ,K=50,Tp 05 shown
Possible physical situation: —
Uo=—200 ft/sec, Go/ps=I0° 1’ /sec’ Pgtm= O Coor To Case
To as shown (°R) hydrogen inflating gos 20.85 500 12
1.9 // 18.65 400 |1
/% 16.15 300 10
A/’/ 13.19 200 9
/// ‘
_ /
Y 18 — ————— 9.32 100 8
]
. | 659 50 7
1.6
0 —=2 -4 . —6 -8 -0 — 1.2
u

Figure 10.- Velocity of top of sphere; K = 50.
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2.0 General parameters:
Yy =141,K=22.22 T, as shown
Possible physical situation: 2 2
up=—300 ft/sec, gp/ps 10 ft/sec, pom=0
To as shown (°R), hydrogen inflating gas
.9 Coor T, Case
13.90 500 18
/ 1243 400 17
1077 300 16
18 = // —
1
—— /
1.7 __16.22 100 14
. /
16 440 50 13
. [}
.5
0 =2 -4 -6 -8 -1.0 -1.2 -1.4

Figure 1l.- Velocity of top of sphere; K = 22.22.
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1.9
General parameters:
y=141,K=12.5,Co s shown
Possible physical situation: 6.2 2
ug= —400 ft/sec, op /p =10 ft/sec, Patm= O
8 To as shown (°R), hydrogen inflating gas
l.
Eo or To Case
i042 500 24
/ 9.32 400 23
8.07 300 22
1.7 A//
16 // 466 100 20
//
L5 330 50 19
e
14
0] -2 -4 -6 -8 —-1.0 -1.2 -14

<l

Figure 12.- Velocity of top of sphere; K = 12.5.
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L8 General parameters: €o or T9 Case
=141, ,K=8 €y as shown 834 500 30
Possible physical situation: 6.2 2 7.46 400 29
Ug=—500 ft/sec, op/ps=10"ft /sec,, poty O
- T, 0s shown{°R), hydrogen infiating gas A A 6.46 300 28
/é / 527 200 27
/ I
- //
1.4 —
___________——————-254 50 25
4/
“%0 -2 -4 g 8 -8 -10 -2 -4

Figure 13.- Velocity of top of sphere; K = 8.
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1

General parameters: 5‘:956‘:" 5T°
a - Case . 00
y =141, K=3556, ¢, as shown /4.97 400
1.6 Possible physical situation: 35/
6 ) % ¢ (2 > // 4.31 300
u, = =750 ft/sec, "‘Ts =10 / sec 34
Patm* o'x i /
1.5+ T, as shown (°R) /] / 33 52 200
Hydrogen inflating g// /
1.3 ///
1.2
/§I/- 1.76 50
/
(|
1.0
o -2 -4 -6 -.8 1.0

u

Figure 1l4.- Velocity of top of sphere; K = 3.556.
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—

General parameters:

y=14l, K=20,

Possible physical situations:
u, =—1000 ft/sec,
PS
pafm=o

T, os shown (°R)

o .08 tt2 /sec?

€, as shown

Case
42

40

c. or T
4.17 500

3.73 400

3.23 300

Hydrogen inflating gas

7

y
7
~

Figure 15.- Velocity of top of sphere; K =

/2.64 200
39
- //
I 1.86 100
=
//
______-—-——1/
}/ 1.32 50
0 -2 -4 ) -6 -8 -1.0

2.0.
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1.8
Hydrogen (case 36)
16 Helium (caée 43)
u, = -750 ft/sec
t4H T, = 500°R
g,
— z10° 12 /sec?
P!
1.2
Air (case 45)
1.0 — =t Argon (case 49)
8 + CC)2 {case 44)
6
4
Freon |2 (case 46)
Octane (case 48)
2
Dodecane (case 47)
0
0 10 20 30 40 50 60 70 80
g db
dy

Figure 23.- Effects of various gases on acceleration.



] Case
36
u, = =750 ft/sec Hydrogen
1.6 T, = 500°R ////////’/ v 43
o Helium
-
___’____‘%
1.4 b————i
1.2
. 45
AL 149
1.0 Argon
Co, 44
8
.6
4
Freon
12 46
48
Octane
.2
Dodecane a7
6]
0 -2 -4 -6 -8 -1.0

u

Figure 24.- Effects of various gases on velocity.
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k9

1.8 \ l '
u, = —750 ft/sec
-6 T, = 500 °R
%o - 10® 12 /sec?
PS
. Helium (case 43) l
1.4 bss — Hydrogen (case 36)
| |
Note: No reflected wave intersections
L2 possible, except for hydrogen(case 36)
. Air (case 45)
i.0
Argon (case 49)
y
8 "~ CO, (case 44)
.6
4
Freon 12 (case 46)
\ Octane Cg Hq (case 48)
DodecaneC;, H“J
(case 47)
0]
0 4 .8 1.2 1.6 2.0

Figure 25.- Effects of various gases on trajectory.
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